

Adaptation to Climate Change in Agriculture Case studies and policies in Italy "Impacts and responses in the water sector"

Rome 16/07/2013

Dott.ssa Stefania Luzzi Conti Ing. Gian Marco Dodaro

INEA

INEA

Index

- 1. Introduction
- 2. Impacts of CC on water resources and agriculture
- 3. Importance of water resources for Italian agriculture
- 4. Water saving in agriculture
- **5. Irrigation advisory services**
- 6. Wastewater reuse for agriculture

1. Introduction

- Climate Change (CC): in the last decades:
 - → increased temperatures and changes in rainfall patterns (decreasing of water availability and different time /space distribution of rainfall);
 - → increased intensity/frequency of extreme events (drought and floods, heat waves, etc.).

What to do: national problem,

- → implementation of major works/contributions;
- → adjustment of policies for adaptation/mitigation.

2. Impacts of CC on water resources and agriculture

- Meteorological parameters of major interest from the agronomic point of view:
 - Temperature;
 - Rainfall;
- ➤ **Short-term impacts**: influence on water availability and agricultural practices;
- > Long-term effects:
 - worsening of the marginality of many agricultural systems in vulnerable regions;
 - high uncertainty in decision-making for farmers;
 - uncertainty on agricultural production (food security and quality concerns).

3. Importance of water resources for Italian agriculture

> Irrigated production:

- > approximately 80% of the exported Italian vegetable production comes from irrigated crops;
- livestock and diary sector based on irrigated pasture production;
- Irrigation has a multifunctional role on the territory: positive external effects
 - e.g.. protection of soil from erosion and desertification, conservation of migratory protected species; quickening of the natural pattern (biodiversity, water quality), groundwater recharge, and recreational purposes and cultural landscape heritage, historical and architectural heritage.
- > Thus: water is used in agriculture, NOT "consumed": providing FOOD CHAIN and environmental public goods.

4. Water saving in agriculture

- Irrigation advisory services;
- Knowledge on irrigation supporting decision making: IRRIFRAME and SIGRIAN – INEA;
- Wastewater reuse for agriculture irrigation with alternative water sources.

5. Irrigation advisory services

- ➤ **Goal:** improvement of water management to achieve higher/same yields and water saving through the water requirements assessment;
- Users: reclamation and irrigation consortia (collective irrigation);- farmers;
- > Daily/weekly information and communication between the consortium and the farmer:
 - **tool:** internet, e-mail, text messages;
 - **information**: when to irrigate and how much water.
- Methodology based on satellite images, weather climate data, geographic information systems, cost-benefit analysis, water balance models and irrigation requirements calculations.

5b. European research project SIRIUS (INEA)

- Pilot Area in Italy: Consortium Sannio-Alifano;
- ➤ Acquisition of multispectral satellite data (LANDSAT TM, SPOT) and "preprocessing" of images (radiometric correction, geo-referencing);
- Calculation of vegetation indices (NDVI, WDVI, LAI);
- Acquisition of agro-meteorological data from stations next monitored area;
- Production of maps of potential evaportranspiration (FAO methodology)
- Determination of crop coefficients (Kc);
- Calculation of irrigation requirement for each crop (maps with weekly time

scale)

5c. IRRIFRAME national Service (ANBI-CER)

- Service available for all irrigation consortia, really used by 36 located in 11 Italian regions;
- Algorithms for water balance (soil/plant/atmosphere): calculation of the water content in the soil, crop growth (LAI and root depth), water requirement of the crop;

> Output: best moment and quantity of water for irrigation (text messaging to

farmers);

5d.Integration between IRRIFRAME and SIGRIAN from 2014

- > **SIGRIAN** National information system for water management for agriculture:
 - data on irrigation (served and irrigated areas, networks, management characteristics, etc.) supporting:
 - water planning and programming;
 - regional and sub-regional actions for irrigation;
 - River basin Management plans;
- **➤** Integration SIGRIAN/IRRIFRAME:

National-regional-river basin level/local-farm level.

5d. Integration SIGRIAN/IRRIFRAME

6. Wastewater reuse for agriculture

- ➤ Reuse of treated wastewater → qualitative and quantitative integrated protection goals:
 - production of additional and non-conventional water resources;
 - reduction of surface and groundwater abstraction;
 - reduction of polluters discharged in to water bodies.
- > Potential impacts and main concerns on economic-technical feasibility:
 - environmental/agronomic: runoff into the groundwater (salinity, metals and organic substances);
 - sanitary: possible presence of bacteria, viruses, parasites;
 - ➤ infrastructural: re-use standards required by the legislation implies plants' adaptation; structural connection between plants and irrigation networks;
 - economic: cost-opportunity, scarcity value, cost-benefits of investments.

6b. AGROSCENARI project (INEA)

- AGROSCENARI Project http://www.agroscenari.it/
 - 9 research lines → **INEA line 9b**:
 - impacts and effects of scenarios of CC on agriculture/irrigation systems;
 - policy instruments to be adopted (mitigation and adaptation).
- ▶ Pilot area → Val Padana (Province of Cremona, Bergamo, Parma and Piacenza).
 - Analysis of these aspects of wastewater reuse for agriculture in the basin of Val Padana:
 - > Technical and economic evaluation with a MULTI-CRITERIA ANALYSIS
 of several alternative hypotheses of reuse associated with the different
 investments for treatment plants and irrigation networks;
 - Data from SIGRIAN.

6b. AGROSCENARI project (INEA)

6b. AGROSCENARI project (INEA)

Multi-criteria Model

Criteria against which was rated the feasibility:

<u>Factors</u>: Distance from water bodies; Vulnerability of aquifers;

Aridity Index De Martonne; Distance from urban centers;

Construction type network;

<u>Constraints</u>: Distance from treatment plants;

Irrigation requirements of the areas;

Assessment of the feasibility

Usability maps

Cost-Benefits Analysis of various hypotheses (in suitable areas)

benefits >> costs

Considerations - Adaptation actions

 Conversion of irrigation systems with lower water consumption and increased efficiency (sprinklers and drip irrigation);

➤ **Irrigation network**: where possible, spreading of the most modern and efficient types as under pressure networks;

> **Storage** like reservoirs and hills lakes;

Wastewater reuse for agriculture – irrigation with alternative water sources

Irrigation advisory services

THANK-YOU FOR THE ATTENTION

luzziconti@inea.it dodaro@inea.it